Controlled bilipschitz extension

A map f\colon X\to Y is L-bilipschitz if L^{-1} |a-b| \le |f(a)-f(b)| \le L |a-b| for all a,b\in X. This definition makes sense if X and Y are general metric spaces, but let’s suppose they are subsets on the plane \mathbb R^2.

Definition 1. A set A\subset \mathbb R^2 has the BL extension property if any bilipschitz map f\colon A\to\mathbb R^2 can be extended to a bilipschitz map F\colon \mathbb R^2\to\mathbb R^2. (Extension means that F is required to agree with f on A.)

Lines and circles have the BL extension property. This was proved in early 1980s independently by Tukia, Jerison and Kenig, and Latfullin.

Definition 2. A set A\subset \mathbb R^2 has the controlled BL extension property if there exists a constant C such that any L-bilipschitz map f\colon A\to\mathbb R^2 can be extended to a C L-bilipschitz map F\colon \mathbb R^2\to\mathbb R^2.

Clearly, Definition 2 asks for more than Definition 1. I can prove that a line has the controlled BL extension property, even with a modest constant such as C=2000. (Incidentally, one cannot take C=1.) I still can’t prove the controlled BL extension property for a circle.

Update: extension from line is done in this paper.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s