A relation between polynomials

This is a brief foray into algebra from a 2006 REU project at Texas A&M.

Given two polynomials P,Q \in \mathbb C[z_1,\dots,z_n], we write Q\preccurlyeq P if there is a differential operator T\in \mathbb C[\frac{\partial}{\partial z_1},\dots, \frac{\partial}{\partial z_n}] such that Q=T P.

The relation \preccurlyeq  is reflexive and transitive, but is not antisymmetric. If both Q\preccurlyeq P and Q\preccurlyeq P hold, we say that P and Q are \partial-equivalent, denoted P\thicksim Q.

A polynomial is \partial -homogeneous if it is \partial -equivalent to a homogeneous polynomial. Obviously, any polynomial in one variable has this property. Polynomials in more than one variable usually do not have it.

The interesting thing about \partial -homogeneous polynomials is that they are refinable, meaning that one has a nontrivial identity of the form P(z)=\sum_{j\in\mathbb Z^n} c_{j} P(\lambda z-j) where c_{j}\in \mathbb C, j\in \mathbb Z^n, and only finitely many of the coefficients c_j are nonzero. The value of \lambda does not matter as long as |\lambda|\ne 0,1. Conversely, every \lambda -refinable polynomial is \partial -homogeneous.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s