Asymptotics of 3n+1 stopping time

It is a well-known open problem whether the following process terminates for every positive integer:

3n+1 flow chart
3n+1 flow chart

Experiments suggest that it does, possibly with unintended side effects.

Since for any odd integer {n} the number {3n+1} is even, it is convenient to replace the step {n:=3n+1} with {n:=(3n+1)/2}, as show below:

Optimized flow
(3n+1)/2 flow chart

As a function of {n}, the stopping time has a nice patterned graph:

Stopping time
Stopping time

An odd integer {n} is of the form {4k+1} or {4k+3}. In the first case, {(3n+1)/2 = 6k+2} is even, while in the second case {(3n+1)/2 = 6k+5} is odd. So, if {n} is picked randomly from all odd integers of certain size, the probability of {(3n+1)/2} being even is {1/2}. Similarly, for an even {n}, the number {n/2} can be even or odd with probability {1/2}.

This leads to a stochastic model of the process:

Stochastic flow
Stochastic flow

The graph of stopping time in the stochastic model is, of course random. It looks nothing like the nice pattern of the deterministic process.

Stopping time, stochastic version
Stopping time, stochastic version

However, smoothing out both graphs by moving window of width {200} or so, we see the similarity:

Moving averages, deterministic and stochastic
Moving averages, deterministic and stochastic

The stochastic process is much easier to analyze. Focusing on the logarithm {\log x}, we see that it changes either by {\log(1/2)} or by approximately {\log (3/2)}. The expected value of the change is {\displaystyle \frac12\log (3/4)}. This suggests that we can expect the logarithm to drop down to {\log 1=0} in about {\displaystyle \frac{2}{\log (4/3)}\log x} steps. (Rigorous derivation requires more tools from probability theory, but is still routine.)

The curve {\displaystyle \frac{2}{\log (4/3)}\log x} fits the experimental data nicely. (The red curve, being randomly generated, is different from the one on the previous graph.)

Logarithmic growth
Logarithmic growth

For an in-depth investigation, see Lower bounds for the total stopping time of 3X+1 iterates by Applegate and Lagarias.

For the computations, I used Scilab. The function hail(n,m) calculates the stopping times up to given value of n, and takes moving average with window size m (which can be set to 1 for no averaging).

function hail(n,m)
    steps=zeros(1:n);
    steps(1)=0
    for i=2:n 
        k=i;
        s=0;
        while k>=i 
            if modulo(k,2)==0 then 
                k=k/2; 
                s=s+1;
            else 
                k=(3*k+1)/2;
                s=s+1;
            end
        end
        steps(i)=s+steps(k);
    end
    total = cumsum(steps) 
    for i=1:n-m
        average(i)=(total(i+m)-total(i))/m;
    end
    plot(average,'+');
endfunction 

As soon as the result of computations drops below the starting value, the number of remaining steps is fetched from the array that is already computed. This speeds up the process a bit.

The second function follows the stochastic model, for which the aforementioned optimization is not available. This is actually an interesting point: it is conceivable that the stochastic model would be more accurate if it also used the pre-computed stopping time once {x} drops below the starting value. This would change the distribution of stopping times, resulting in wider fluctuations after averaging.

function randomhail(n,m)
    rsteps=zeros(1:n);
    rsteps(1)=0
    for i=2:n 
        k=i;
        s=0;
        while k>1 
            if grand(1,1,"bin",1,1/2)==0 then 
                k=k/2; 
                s=s+1;
            else 
                k=(3*k+1)/2;
                s=s+1;
            end
        end
        rsteps(i)=s;
    end
    rtotal = cumsum(rsteps) 
    for i=1:n-m
        raverage(i)=(rtotal(i+m)-rtotal(i))/m;
    end
    plot(raverage,'r+');
endfunction

3 thoughts on “Asymptotics of 3n+1 stopping time”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s