# Wild power pie

Many people are aware of ${\pi}$ being a number between 3 and 4, and some also know that ${e}$ is between 2 and 3. Although the difference ${\pi-e}$ is less than 1/2, it’s enough to place the two constants in separate buckets on the number line, separated by an integer.

When dealing with powers of ${e}$, using ${e>2}$ is frequently wasteful, so it helps to know that ${e^2>7}$. Similarly, ${\pi^2<10}$ is way more precise than ${\pi<4}$. To summarize: ${e^2}$ is between 7 and 8, while ${\pi^2}$ is between 9 and 10.

Do any two powers of ${\pi}$ and ${e}$ have the same integer part? That is, does the equation ${\lfloor \pi^n \rfloor = \lfloor e^m \rfloor}$ have a solution in positive integers ${m,n}$?

Probably not. Chances are that the only pairs ${(m,n)}$ for which ${|\pi^n - e^m|<10}$ are ${m,n\in \{1,2\}}$, the smallest difference attained by ${m=n=1}$.

Indeed, having ${|\pi^n - e^m|<1}$ implies that ${|n\log \pi - m|, or put differently, ${\left|\log \pi - \dfrac{m}{n}\right| < \dfrac{1}{n \,\pi^n}}$. This would be an extraordinary rational approximation… for example, with ${n=100}$ it would mean that ${\log \pi = 1.14\ldots}$ with the following ${50}$ digits all being ${0}$. This isn’t happening.

Looking at the continued fraction expansion of ${\log \pi}$ shows the denominators of modest size ${[1; 6, 1, 10, 24, \dots]}$, indicating the lack of extraordinarily nice rational approximations. Of course, can use them to get good approximations, ${\left|\log \pi - \dfrac{m}{n}\right| < \dfrac{1}{n^2}}$, which leads to ${\pi^n\approx e^m}$ with small relative error. For example, dropping ${24}$ and subsequent terms yields the convergent ${87/76}$, and one can check that ${\pi^{76} = 6.0728... \cdot 10^{37}}$ while ${e^{87} = 6.0760...\cdot 10^{37}}$.

Trying a few not-too-obscure constants with the help of mpmath library, the best coincidence of integer parts that I found is the following: the 13th power of the golden ratio ${\varphi = (\sqrt{5}+1)/2}$ and the 34th power of Apèry’s constant ${\zeta(3) = 1^{-3}+2^{-3}+3^{-3}+4^{-4}+\dots}$ both have integer part 521.