## Another orthonormal basis: Hermite functions

This is an orthonormal basis for $L^2(\mathbb R)$. Since the measure of $\mathbb R$ is infinite, functions will have to decay at infinity in order to be in $L^2$. The Hermite functions are
$\displaystyle \Phi_n(x)=(2^n n! \sqrt{\pi})^{-1/2} H_n(x)e^{-x^2/2}$
where $H_n$ is the nth Hermite polynomial, defined by
$\displaystyle H_n(x)=(-1)^n e^{x^2} \left(\frac{d}{dx}\right)^n e^{-x^2}$.
The goal is to prove that the functions $\Phi_n$ can be obtained from $x^n e^{-x^2/2}$ via the Gram-Schmidt process. (They actually form a basis, but I won’t prove that.)

One can observe that the term $e^{-x^2/2}$ would be unnecessary if we considered the weighted space $L^2(\mathbb R, w)$ with weight $w(x)=e^{-x^2}$ and the inner product $\langle f,g\rangle=\int_{\mathbb R} fg\,w\,dx$. In this language, we orthogonalize the sequence of monomials $\lbrace x^n\rbrace\subset L^2(\mathbb R, w)$ and get the ON basis of polynomials $\{c_n H_n\}$ with $c_n = (2^n n! \sqrt{\pi})^{-1/2}$ being a normalizing constant. But since weighted spaces were never introduced in class, I’ll proceed with the original formulation. First, an unnecessary graph of $\Phi_0,\dots,\Phi_4$; the order is red, green, yellow, blue, magenta.

Claim 1. $H_n$ is a polynomial of degree $n$ with the leading term $2^n x^n$. Proof by induction, starting with $H_0=1$. Observe that

$\displaystyle H_{n+1}=- e^{x^2} \frac{d}{dx}\left(e^{-x^2} H_n\right) =2x H_n - H_n'$

where the first term has degree $n+1$ and the second $n-1$. So, their sum has degree exactly $n+1$, and the leading coefficient is $2^{n+1}$. Claim 1 is proved.

In particular, Claim 1 tells us that the span of the $\Phi_0,\dots,\Phi_n$ is the same as the span of $\lbrace x^k e^{-x^2/2}\colon 0\le k\le n\rbrace$.

Claim 2. $\Phi_m\perp \Phi_n$ for $m\ne n$. We may assume $m. Must show $\int_{\mathbb R} H_m(x) H_n(x) e^{-x^2}\,dx=0$. Since $H_m$ is a polynomial of degree $m, it suffices to prove

(*) $\displaystyle \int_{\mathbb R} x^k H_n(x) e^{-x^2}\,dx=0$ for integers $0\le k.

Rewrite (*) as $\int_{\mathbb R} x^k \left(\frac{d}{dx}\right)^n e^{-x^2} \,dx=0$ and integrate by parts repeatedly, throwing the derivatives onto $x^k$ until the poor guy can't handle it anymore and dies. No boundary terms appear because $e^{-x^2}$ decays superexponentially at infinity, easily beating any polynomial factors. Claim 2 is proved.

Combining Claim 1 and Claim 2, we see that $\Phi_n$ belongs to the $(n+1)$-dimensional space $\mathrm{span}\,\lbrace x^k e^{-x^2/2}\colon 0\le k\le n\rbrace$, and is orthogonal to the $n$-dimensional subspace $\mathrm{span}\,\lbrace x^k e^{-x^2/2}\colon 0\le k\le n-1\rbrace$. Since the “Gram-Schmidtization'' of $x^n e^{-x^2/2}$ has the same properties, we conclude that $\Phi_n$ agrees with this “Gram-Schmidtization'' up to a scalar factor.

It remains to prove that the scalar factor is unimodular ($\pm 1$ since we are over reals).

Claim 3. $\langle \Phi_n, \Phi_n\rangle=1$ for all $n$. To this end we must show $\int_{\mathbb R} H_n(x)H_n(x)e^{-x^2}\,dx =2^n n! \sqrt{\pi}$. Expand the first factor $H_n$ into monomials, use (*) to kill the degrees less than n, and recall Claim 1 to obtain
$\int_{\mathbb R} H_n(x)H_n(x)e^{-x^2}\,dx = 2^n \int_{\mathbb R} x^n H_n(x)e^{-x^2}\,dx = (-1)^n 2^n\int_{\mathbb R} x^n \left(\frac{d}{dx}\right)^n e^{-x^2} \,dx$.
As in the proof of Claim 2, we integrate by parts throwing the derivatives onto $x^n$. After n integrations the result is
$2^n \int_{\mathbb R} n! e^{-x^2} \,dx = 2^n n! \sqrt{\pi}$, as claimed.

P.S. According to Wikipedia, these are the “physicists’ Hermite polynomials”. The “probabilists’ Hermite polynomials” are normalized to have the leading coefficient 1.